Ten identical cookies are to be distributed among 5 different kids (A, B, C, D, and E). All ten cookies are distributed. How many different ways can the five kids be given cookies? You may assume I'm not there to eat them all.

I need to start thinking about this one. Since there are 10 possible combination for 5 different places that means the upper bound is 5^10. But not all of those will work because the sum of the cookies has to be 10, no more no less. Need to do some reading on combinations. If anybody wants to help out I'd suggest a google search on: "Combinations Permutations Math"

Obvious real world answer: You give each kid 2 so that you don't have to listen to them cry.

Cohort Answer: Give the littlest kid all 10 and than leave the room.

The Simon answer: destroy all the cookies because you think cookies are immature, lame, and because everyone who made the cookies was acting like an asshole at the time.

## 7 Comments:

They can't be given the cookies, because there can't ever be 10 identical cookies.

Here's a riddle for you JRRT fans:

What do I have in my pocket?

I need to start thinking about this one.

Since there are 10 possible combination for 5 different places that means the upper bound is 5^10. But not all of those will work because the sum of the cookies has to be 10, no more no less. Need to do some reading on combinations. If anybody wants to help out I'd suggest a google search on: "Combinations Permutations Math"

Obvious real world answer: You give each kid 2 so that you don't have to listen to them cry.

Cohort Answer: Give the littlest kid all 10 and than leave the room.

Or the Jim answer: Show the kids the cookies and then take them away.

I vaguely remember permuations from 9th grade. Isn't it n!/(n-r)! or something to that effect.

856

The Simon answer: destroy all the cookies because you think cookies are immature, lame, and because everyone who made the cookies was acting like an asshole at the time.

Then go up north for the weekend.

Post a Comment

## Links to this post:

Create a Link

<< Home